

Achieve up to 40% higher capacity with higher efficiency and within the same footprint of an existing screen. WE CAN PROVE IT!

TECHNICAL STUDY: Lab Testing

GK MINING SCREEN TEST CIRCUIT

*Screen Testing Lab located in Crystal Lake, Illinois, USA, has conducted tests on actual customer material from Europe, China, Japan, Australia & South America

Replicates Actual Process Conditions of A Customer's SAG, AG, HPGR or Crusher Circuit

KEY ELEMENTS:

Belt Feeder to meter in customer material to replicate actual bed depth and equivalent volume as their process screen

Test Screen with \pm 3000 mm length by 300 mm width screening area. Overs from the screen are recirculated 3-5 times which enables scale up to 4.8M Wide by 12M Long STM Single Deck or Dual Deck STM Screens.

Metered Water Manifold and Spray Bars (wet screening) to achieve equivalent material to water ratios of material slurry entering the screen and water sprayed along the length of the screen surface

Testing Lab Equipment Ro-Tap Sieves, Drying Oven and Weigh Scales to analyze and document each passing of material over the test screen for PSD, Screening Efficiency & % Moisture

LAB SCREEN SET-UP OPTIONS:

- Angle of Incline: Flat to 20+ degrees
- Angle of Throw: 35 to 55 degrees
- RPM: 500 to 1000
- Stroke: 3mm to 12.5mm
- Material Rate of Speed (Screening Time): 0.2 to 0.5 M/s

																								Cummul							%	
											Decimal				Cummula						Time for			ative					Minus		Efficienc	
											%	Cummulati		Cummulati	tive			Feed	Feed	Surge	Rock to		Time on	Time on			Gross		4mm		y Based	
		Transfer	Gross		Grass	A Wt		Overs	Overs	Weight	Unders	ve Decimal		ve Length	Length of	Feed	No of	Time	Rate	Factor,	Travel	Rock in	Screen	Screen		Tare Wt.	Wt.	Dry Wt.	Wt. in		an %-	
	Feed	Time,	Wet Wt,	Tare Wt,	Dry Wt,	Wet to		Wet Wt,	Dry Wt,	Removed,	Remove	% Unders	No of	of Screen	Screen	Rate,	Pebbles	Surge	Surge	Rate *	9.5 FT,	Bed Cs,	Deck,	Deck,	No of	Overs	Overs	Overs	Overs		4mm in	MCWB
Run No	Wt, Lbs	secs	gm	gm	gm	Dry, gm	MCWB	Lbs	Lbs	Lbs	d	Removed	Passes	Deck, FT	Deck, M	TPH	Retained	Factor	Factor	Time	secs	FPM	secs	secs	Passes	(Gm)	(Gm)	(Gm)	(Gm)	%-4m	overs	Overs

Test No X- (Aperture size Screening wet) XX.X° incline

- Vibratory test screen has X mm x X mm slotted aperture panels.
- Metering Belt Feeder provides designed capacity to the test screen at a scaled ratio to the designed width of the existing screen.
- "Unders" from the XX mm screening test prior is used for this test.
- The design capacity for the lab scale vibratory screen area computed using the following scale factor with the stated PSD of XX% passing X mm = XXX MTPH * XX% * 1.1 * XX" test screen width / XX" design screen width = XX.X STPH
- Water is added creating a mixing box condition prior to entry of material onto the test screen. Slurry to be the same composition of water and crushed ore as at the mine. This only occurs on Run 1. See Fig 1
- The Ratio of Mixing Box water added is based on the following ratio: XXX m³/hr./ XXX MTPH= X.XXX
- The spray water added to the lower deck (XX mm aperture) is calculated based on the following criteria:
 - o The amount of spray water on the top deck is considered water for washing on the lower deck as well.
 - Assumption of a conservative reduction of XX% of the spray water from the upper deck will not be applied to the lower deck
 - Spray water on the upper deck is designed at a rate of XX m³/hr.* XX% = XX m³/hr.
 - o Spray water on the lower deck is designed at a rate of XX m³/hr.
 - o Therefore, the total spray water on the lower deck was designed at = $XX + XX = XX m^3/hr$.
 - o This equate to XX m3/hr.* 4.4029*XX"/XX" = X.X GPM
 - The spray water is added to the first 3 runs with the last nozzle spraying approximately X' from the discharge end.
 See Fig 2
 - o All the nozzles were angled at XX° from horizontal
 - o A total of X (X mm) orifice nozzles are used for the test
- Product is screened at a 10-foot screen length to remove the +X mm.
- Screen operates at a XX.X° incline, XXX RPM and constant vibration acceleration under load of XX" stroke.
- Material retention time across the test screen is approximately ~x seconds per run.
- Sequential runs of 0-10, 10-20, 20-30, 30-40 & 40-50 feet of screening are completed.
- "Overs" from the test screen for each 10-foot run are collected and weighed.

Fig 2: Run 2 & 3

																	Time for			
						Cumulative		Cumulative	Cumulative		Cumulative			Feed	Feed	Surge	Rock to		Time on	Cumulative
		Transfer		Weight	Decimal	Decimal %		Length of	Length of		Decimal %	Feed	No of	Time	Rate	Factor,	Travel	Rock in	Screen	Time on
	Feed Wt,	Time,	Overs	Removed	% Unders	Unders	No of	Screen Deck,	Screen Deck,	Decimal	Unders	Rate,	Pebbles	Surge	Surge	Rate *	8.25 FT,	Bed Cs,	Deck,	Screen
Run No	Lbs	secs	Wt, Lbs	, Lbs	Removed	Removed	Passes	FT	м	% Unders	Removed	TPH	Retained	Factor	Factor	Time	secs	FPM	secs	Deck, secs

Test No Y- (YY mm x YY mm Screening dry)

- Sample drums Y & Y received are mixed individually and a PSD taken for each batch.
- Each batch is tested individually twice to confirm repeatable results.
- The second test for each batch involves reconstitution of the material.
- Metering Belt Feeder provides a designed capacity to the test screen at a scaled ratio to the designed width of the existing screen.
- The design capacity for the lab scale vibratory screen is computed with the following scale factor of = YYY MTPH * 1.1 * YY" test screen width/YY" design screen width = YY STPH
- Vibratory test screen has YY mm x YY mm slotted aperture panels.
- Product is screened on a 10 feet screen length to remove the +YY mm.
- Screen operated at a YY° incline, YYY RPM and constant vibration acceleration under load of YYY" stroke.
- Material retention time across the test screen is approximately ~Y seconds per run.
- Sequential runs of 0-10, 10-20 & 20-30 feet of screening are completed.
- "Overs" from the test screen for each 10-foot run are collected and weighed.

Example of Collected Data Set

Run No	Feed Wt, Lbs	Transfer Time, secs	Gross Wet Wt, gm	Tare Wt, gm	Gross Dry Wt, gm	ΔWt Wet to Dry, gm	MCWB	Overs Wet Wt, Lbs	Overs Dry Wt, Lbs	Weight Removed, Lbs	Decimal % Unders Removed	Cummulative Decimal % Unders Removed
7-1	601	21.5	645.3	47.8	622.7	22.5	3.8%	310	298	302.7	0.6317	0.6317
7-2	298	21.0	1,026.7	47.1	985.3	41.4	4.2%	207	198	100.0	0.2087	0.8405
73	198	21.0	983.1	45.6	943.6	39.5	4.2%	163	156	42.1	0.0879	0.9284
7-4	156	21.0	624.2	46.7	612.4	11.8	2.0%	139	136	20.0	0.0417	0.9700
7-5	136	21.0	1,111.9	46.1	1,093.0	18.9	1.8%	124	122	14.4	0.0300	1.0000
									Σ	479.2		
									Wt Unders	445		

								Time for								Minus		×					
		Commulative			Feed	Feed	Surge	Rock to		Time on	Commutative			61020		4mm		Efficiency					
	Cummulative	Length of	Feed	No of	Time	Rate	Factor,	Travel	Rock in	Screen	Time on		Tare Wt.	Wb.	Dry Wt.	Wit, In		Based on					
No of	Longth of Screen	Screen Deck,	Bate,	Pebbles	Surge	Surge	Bate *	9.5 FT,	Bed Ci,	Deck,	Screen Deck,	No of	Overs	Overs	Overs	Overs		% Ann in	MCWB				
Passes	Deck, FT	M	TPH	Retained	Factor	Factor	Time	8006	FPM	SPCS	Sec.	Passes	(Gm)	(Gm)	(Gm)	(Gra)	%-fm	OWNERS	Overs	Calculation Bosed	on PSD		
1	9.38	2.92	30.3		1.00	0.99	0.99	4.37	108.3	3.20	5.20	1	47.80	045.50	022.70	00.00	10.52%	92.1%	3.8%	PSD Drum B+4 mm		75.9%	
2	19.17	5.84		No	1.02		1.01	0.57	73.5	7.57	12.83	2	47.30	1,025.70	985.90	134.50	14.37%	93.8%	4.2%	Available <4 mm		456.0	
3	28,75	8,70		Significant	1,92		1.01	0.01	82.4	9.2%	23.75	3	45,65	583.10	943,60	55.70	10.00%	35.2%	4.2%	Cilicianoy	7.1	00%	
4	38.33	11,68		peopling	1,02		1.01	5.65	87.6	6.51	26-25	4	46.70	624.20	612.40	11.30	3.00%	99,4%	2.0%	efficiency.	7-2	38%	
5	47.92	34.60			1.02		1.01	5.50	93.0	6.33	32.09	5	46.10	1,111.90	1,093.00	9,80	0.94%	99.7%	1.0%	Officiency	3-3	90%	
																				Efficiency	7.4	102%	
				9	inge Faeton	8 B	1.00													efficiency	3.5	105%	

*A typical sample run takes ~2 hours to complete the multiple screen runs, collect data and conduct lab testing of collected samples

Examples of PSD and Test Run Curves

*Proper attention is given to extract representative samples for particle size analysis

Examples of PSD and Test Run Curves (continued)

**Blue & orange lines represent the screening efficiency from 2 separate samples. Yellow & teal lines represent the "Overs" moisture

CALL TODAY!

Learn how GK can unlock your screening circuit capacities!

- 1. Identify your screening bottlenecks
- 2. Schedule your test in our state-of-the art lab facility
- 3. Receive your personalized test results!

Test No A

 Vilkestran
Meller mit societaria
Vilkestran
Vilkestran
The Stationary
Vilkestran
Vicker
Vicker
Vicker
Vicker
Nationary
The
Stationary
The
Stationary
The
Stationary
The
Stationary
The
Stationary
The
Stationary
Stationary</l